Department of Engineering Technology

Department Chair: Dr. Faruk Yidiz (936) 294-3774

Mission

The mission of the Engineering Technology Department is to provide an educational program designed to provide an academic and practical experiences in the areas of management, design, leadership, engineering, and technology for students to prepare to meet industry challenges for the 21st century.

Academic Programs

The department offers a Bachelor of Science degree with a major in Engineering Technology with programs in the following areas:

  • Construction Management
  • Design and Development
  • Engineering Technology--Electronics Concentration
  • Electronics and Computer Engineering Technology
  • Engineering Technology--Safety Management
  • Engineering Technology (Teaching options are available in Engineering Technology as well as Trade and Industry)

Highlights

The Engineering Technology Deparmt offers courses in three different facilities.

  • The Fred L. Pirkle Engineering Technology Center (PIRK) provides space for several specialized classrooms and laboratories.
    • The computer-aided design and drafting (CADD) labs, in PIRK Room 240 and 242, provide students with experiences with several construction, architectural and engineering design software programs, design and drafting tools, and 3D prototyping printers.
    • Electricity, electronics, automation and control, instrumentation, and robotic courses are offered in the Electronics and Robotics Laboratories in room 140 and 142 of PIRK.
    • Energy systems courses and workshops are offered in the Energy Systems and Sustainability labs and on the Energy Terrace in PIRK 220.
    • The collaboration area (PIRK 100) provides the infrastructure and state-of-the-art equipment/tools necessary for capstone research projects.
  • The Westmoreland Engineering Technology Laboratory (WETL), located on Avenue M, provides students with hands-on experiences in drafting and design, surveying, electrical and renewable energy technologies, as well as metal, wood, and concrete construction for residential and commercial structures.

Career Opportunities

  • Computer Hardware and Software
  • Automation and Control
  • Architectural Design
  • Construction Management
  • Electrical and Mechanical Systems
  • Electronics Systems Management
  • Industrial Design and Development
  • Industrial Safety Management
  • Instrumentation Systems
  • Engineering Technology and Trades and Industry Education
  • Sales and Marketing of Industrial Products

Engineering Technology students learn to draw upon the principles of management, leadership, physical sciences, technology of industry, and basic engineering for the solution of problems involving industrial products, services, materials and processes, and the supervision and management of facilities and personnel.

Suggested Minors

Engineering Technology students typically choose minors from program areas within the department (see Minor area), while others will select from the College of Business Administration such as General Business Administration, Management, Marketing, etc. They also choose minors in Agricultural Engineering Technology, Computer Sciences, Criminal Justice, and many others. These are typical minors; however, students should choose a minor that best suits their needs and interests.

Program Specific Requirements

For additional information regarding admission requirements, degree programs, description of courses, and financial assistance available, please refer to the appropriate sections of this catalog. Brochures and information concerning the department and scholarships may be obtained by calling (936) 294-1216 or writing:

Sam Houston State University
Department of Agricultural Sciences and Engineering Technology
Huntsville, Texas 77341-2088

Website: Department of Engineering Technology

Student Organizations

  • Association of Technology, Management, and Applied Engineering (ATMAE) Student Chapter
  • Sam Houston Construction Association (SHCA)
  • National Association of Home Builders
  • Renewable and Clean Energy Association (RCEA)
  • Society for Women in Excellence in Engineering Technology (SWEET)

Internships

The internship program is intended to provide experience-based learning opportunities for students in their respective discipline of study. Students generally seek internship experience at the end of their junior or senior year. The course identified for internship credit in Engineering Technology is ETEC 4391. Internships may be arranged through student contact with providers or through departmental faculty and staff announcements and postings. All internships must receive departmental approval through application prior to the initiation of the internship. Maximum credit for an internship is six (6) credit hours.

Scholarships

The department is pleased to have available approximately 20 scholarships for students majoring in engineering technology. Scholarships range in value from $1,000 to $5,000 per year. These scholarships are a one-time award and are awarded on an annual basis.  A student may reapply in subsequent years if eligibility requirements are met. 

The Scholarships 4 Kats program must be used to apply for departmental scholarships. The program enables you to apply for all scholarships for which you are eligible, including those outside the Department of Agricultural Sciences & Engineering Technology. The deadline for departmental scholarships and university-wide scholarships is February 1; non-departmental scholarship deadlines vary.

CONTACT:

Dr. Faruk Yildiz
Department Engineering Technology
PO Box 2088, Huntsville, TX 77341
(936) 294-3774

Construction Management

ETCM 1363. Wood Frame Construction. 3 Hours.

This course is a study of materials and methods of wood frame construction found in residential and commercial construction focusing on aspects of load-bearing structural design elements. Instruction is given in the correct use of hand tools and machine tools, job safety, job-site controls, material handling, equipment, and application. Laboratory experiences include design and construction of a wood frame structure with elements typically found in residential construction. (2-2).

ETCM 2363. Architectural Design. 3 Hours.

This course consists of the development of a set of plans and specifications for a small residence.
Prerequisite: ETDD 1390 or ETDD 1361 or FACS 1360 or FACS 2364.

ETCM 2396. Special Topic. 3 Hours.

Individual study in specialized areas of Industrial Technology. To be directed and approved by the Construction Management advisor. This course is designed to be a multitopic course. The student can take the course under various special topics being offered.

ETCM 3368. Concrete/Masonry Construction. 3 Hours.

This course is a study of materials and methods of construction found in concrete and masonry structures. Concrete chemistry, mixing and placement equipment, testing, finishing techniques, reinforcing, formwork, specification, and job-site safety implementing these materials are studied. Laboratory experiences include batch sampling and testing and small group projects implementing concrete and masonry methods and materials. Sophomore standing.
Prerequisite: ETCM 1363.

ETCM 3370. Construction Technology II. 3 Hours.

This course focuses on non-structural construction typically found in cabinetry, trim, and furniture construction. Included is the study of woods, synthetic materials, hardware, and wood joinery. Instruction is given in the correct use of hand and machine tools, job safety, job-site controls, and material specification. Lab experiences include designing, planning, construction, and finishing of a piece of cabinetwork or furniture. Sophomore standing.
Prerequisite: ETCM 1363.

ETCM 3371. Civil Drafting. 3 Hours.

This course will consist of drafting techniques and requirements necessary for civil engineering offices. Topics include survey drafting, map drafting, topos, site plans, subdivision plats, profile drawings and other related topics. Sophomore standing.
Prerequisite: ETDD 1361 or ETDD 1390.

ETCM 3372. Construction Drafting. 3 Hours.

This course is a study of drafting techniques and requirements for the commercial and heavy construction industries and will add to the skill set of construction management students. Topics will include foundation design, commercial building design, structural detail, and premanufactured metal constructed building design. Demonstrations, student inquiry, in-class problem solving, and three dimensional (3D) modeling will be utilized. Sophomore standing.
Prerequisite: ETDD 1361 and ETEC 1371.

ETCM 4096. Directed Study. 1-6 Hours.

Arranged professional and developmental learning experiences incorporating a practical application of construction management skills and practices. To include internships, individual research and industry studies. Variable Credit (1-6).
Prerequisite: Sophomore standing.

ETCM 4330. Construction Mgt & Procedures. 3 Hours.

This course is designed to provide a general knowledge of construction applications and procedures. Emphasis is on site preparation, foundations, and concrete. Emphasis will be placed on the responsibility of general or prime contractors and specialty contractors. Students will be taught cost estimation and procedures for bidding. Junior standing.
Prerequisite: ETCM 1363 and ETDD 1361.

ETCM 4368. Building Materials. 3 Hours.

This course is devoted to the study of qualities, types, and sizes of materials such as lumber and other wood products, masonry, paint, hardware, ceramic and metal products. In addition cost estimates for materials and labor is studied by figuring the cost estimate of a small residence. Extensive use is made of actual samples and other visual aids. Prerequiste: ITEC 1361, ITEC 1340, and ITEC 1363. Junior standing.

ETCM 4369. Special Topic. 3 Hours.

Individual study in specialized areas of Construction Management. To be directed and approved by the Industrial Technology advisor. This course is designed to be a multitopic course. The student can take the course under various special topics being offered.

ETCM 4370. Construction Plans & Documents. 3 Hours.

This course is designed to give a clear insight into the particular problems of construction and proper construction procedures. The site selection, availability of services, grading, subsurface explorations to determine foundation needs, construction organization, and other activities of construction are presented in logical units.
Prerequisite: ETEE 1340, ETDD 1361, and ETCM 1363 or consent of instructor.

ETCM 4371. Building Information Modeling. 3 Hours.

This course focuses on current issues in the construction industry from a Building Information Modeling standpoint. This approach incorporates the integrated project delivery method, productivity measurement, digital modeling, and construction process modeling for construction scheduling.
Prerequisite: ETCM 2363 and ETCM 3372.

Design and Development

ETDD 1361. Engineering Graphics. 3 Hours.

This is a recognized standard course in beginning drawing for engineering and industrial education.

ETDD 1366. Machining Technology I. 3 Hours.

This course serves as an introduction to the problems, techniques, and processes of modern machining technology. Instruction is given in the use of hand and machine tools, introduction to computer numerical control, product planning and development, metric measurement, safety, and opportunities for employment in the machining industry.

ETDD 1390. Intro -Computer Aided Drafting. 3 Hours.

This course is intended to provide the student with an understanding of Computer-Aided Drafting principles. Students will utilize the software command structure of two popular CAD programs, namely AutoCAD and MicroStation, to complete a number of typical and practical drafting application exercises. Approximately one-half of the semester will be spent on each program.

ETDD 2367. Metal Building Systems. 3 Hours.

This course is a study of materials and methods of construction found in metal building systems. Instruction is given in the correct use of hand and power tools, job safety, job-site controls, material handling, equipment and application. Aspects of load design calculations, fastener use, metal coatings, and erection equipment are studied. Laboratory instruction includes basic metal working processes (welding, sheet-metal, foundry, and wrought-iron work) used in metal frame construction. (2-2).

ETDD 2396. Special Topic. 3 Hours.

ETDD 3310. Product Design & Development. 3 Hours.

This course explores the processes by which products are brought to the market place. Processes are examined with special emphasis placed on manufacturing, prototyping, patent and trademark procedures, industrial deisgn, problem solving, and decision-making. In addition, creating and working in cross-functional teams to produce products for consumer use is addressed.
Prerequisite: Sophomore standing, ETCM 2363 and ETDD 1390 or ETDD 1361.

ETDD 3379. Industrial Systems Drafting. 3 Hours.

This course includes the illustration and preparation of drawings and the related symbolism used in electrical and fluid fields. Related and required piping and fitting fundamentals are also covered.
Prerequisite: ETDD 1390 or ETDD 1361 and Sophomore standing.

ETDD 4096. Directed Study. 1-6 Hours.

Arranged professional and developmental learning experiences incorporating a practical application of design and development skills and practices. To include internships, individual research and industry studies. Variable Credit (1-6).
Prerequisite: Sophomore standing.

ETDD 4339. Computer-Aided Drafting Produc. 3 Hours.

This is a computer applications course for design and drafting and introduces students to the techniques used to produce technical models/drawings. Students will learn drafting practices and how to apply them using computer-aided software. Prior knowledge of drafting software and/or prior experience of working with computers is advantageous, but not required/expected. Students will produce technical drawings using various computer design and drafting practices. Concepts of 2D drawings will be covered along with an introduction to three dimensional parametric modeling. The intent is to develop fundamental knowledge and skills that are conceptually applicable to any computer-aided design (CAD) system.
Prerequisite: ITEC 1361 or ITEC 1363 and Junior standing.

ETDD 4369. Special Topic. 3 Hours.

ETDD 4380. Material Hand & Plant Layout. 3 Hours.

This course is the study of the basic requirements needed to develop the most efficient layouts of equipment and of operating and service facilities whether in manufacturing plants, warehouses, or other industrial or business applications. Special emphasis is on the necessary coordination between plant layout, materials handling, work simplification and production planning, and operation control. Junior standing.
Prerequisite: ETEE 1340, ETDD 1361 and ETCM 2363.

ETDD 4388. 3D Parametric Design. 3 Hours.

This is a computer applications course for parametric design and drafting, in which the computer is used to produce parametric technical models/drawings. Students will learn drafting practices and how to apply them using computer aided software. Students will further be able to produce technical drawings using 3D CAD packages. Concepts of creating 2D drawings will be covered along with introduction to 3D parametric modeling. The course will enable the student to use Autodesk Inventor in advanced parametric design/drafting and other courses.
Prerequisite: ETDD 1390 or ETDD 1361.

Engineering Technology

ETEC 1010. Engineering Foundations. 1-2 Hours.

This course focuses on leadership and study skills necessary for succeeding in the many career options available to professionals in industrial education, buisiness and industry. This course is intended for beginning students. Variable credit 1-2.

ETEC 1371. Descriptive Geometry. 3 Hours.

This course emphasizes problems of space relations of points, lines, surfaces, intersections, and developed surfaces, and their application to the graphical solution of engineering problems.

ETEC 2396. Special Topic. 3 Hours.

ETEC 3300. Technology Innovations. 3 Hours.

This course provides a study of societal technologies and their effects on the daily lives of consumers. The course presents the pervasive nature of technology innovations and increases the awareness of the promises of uncertainty associated with the use of technology as a human enterprise. .

ETEC 3340. Solar and Wind Energy Systems. 3 Hours.

This course will examine grid-connected and stand-alone solar photovoltaic and wind energy systems. System components including batteries, PV modules, charge controllers, maximum power point trackers, vertical and horizontal axis turbines, aerodynamics of wind turbines, wind farms and sighting, and inverters will be discussed. A comprehensive review of power production methods from solar and wind resources will be included, along with site surveying, commercial development,economics and environmental impacts.
Prerequisite: ETEE 1340 and Junior Standing.

ETEC 3360. Related Sci Mth & Tech In Occ. 3 Hours.

This is the written portion of an 18-hour segment of proficiency examinations. Consent of department chair.
Prerequisite: Sophomore standing.

ETEC 3361. Related Science, Mathematics, and Technology in Occupations. 3 Hours.

This is the written portion of an 18-hour segment of proficiency examinations.
Prerequisite: Consent of department chair.

ETEC 3362. Manipulative Skills In Occuptn. 3 Hours.

This segment is for the manipulative portion of the proficiency examination. Consent of department chair.
Prerequisite: Sophomore standing.

ETEC 3363. Manipulative Skills in Occupations. 3 Hours.

This segment is for the manipulative portion of the proficiency examination.
Prerequisite: Consent of department chair.

ETEC 3364. Rel Subj In Occuptnl Pers Qual. 3 Hours.

This is the oral portion of the proficiency examination. Consent of department chair.
Prerequisite: Sophomore standing.

ETEC 3365. Knowledge of Related Subjects in Occupations and Personal Qualifications. 3 Hours.

This is the oral portion of the proficiency examination.
Prerequisite: Consent of department chair.

ETEC 3374. Time And Motion Study. 3 Hours.

A study of the principles of motion economy, work measurement and improvement of production methods as they apply to modern industry. Attention is given to human relations, work simplification, and selected charting procedures.
Prerequisite: Sophomore standing or consent of instructor.

ETEC 3375. Statics. 3 Hours.

This course examines qualitative and quantitative treatments of forces and moments. Designing trusses, constructing free body diagrams, and performing equilibrium analysis for coplanar systems are included.
Prerequisite: PHYS 1301, PHYS 1101, and MATH 1316 or MATH 1430 or MATH 2399.

ETEC 3376. Microcontroller Applications. 3 Hours.

This course introduces microcontroller architecture and microcomputer systems, including memory and input/output interfacing. Topics include low-level language programming, bus architecture, I/O systems, interrupts, and other related topics. The functional and technological characteristics of microcontroller structures, memory components, peripheral support devices, and interface logic will be examined. Various hardware configurations and interfacing techniques will be discussed.
Prerequisite: ETEE 1340 and ETEE 2320 and Junior Standing or Consent of Instructor.

ETEC 4096. Directed Study. 1-6 Hours.

Arranged professional and developmental learning experiences incorporating a practical application of engineering technology skills and practices. To include internships, individual research and industry studies. Variable Credit (1-6).
Prerequisite: Sophomore standing.

ETEC 4099. Engineering Innovation. 1-3 Hours.

In this course, students work closely with faculty to design, develop, and implement innovative engineering projects as part of their capstone experience. Variable credit 1-3.
Prerequisite: Faculty Approval.

ETEC 4340. Alternative Energy Technology. 3 Hours.

This course examines existing and potential ambient alternative energy sources, production capacities, energy harvesting, conversion, and storage techniques. The course will also examine fundamental concepts, terminology, definitions, and nomenclature common to all energy systems.
Prerequisite: ITEC 1340 and junior standing.

ETEC 4367. Engineering Materials Techn. 3 Hours.

This course consists of the principles and techniques involved in designing and drawing machine parts and other items normally required in an industrial setting. Topics include sectioning, dimensioning, view rotation, symbols, legends, developments, and blueprint details. Junior standing.
Prerequisite: ETDD 1390 or ETEC 1361.

ETEC 4369. Spec Topics in Industrial Tech. 3 Hours.

Individual study in specialized areas of Industrial Technology. To be directed and approved by the Industrial Technology advisor. This course is designed to be a multitopic course. The student can take the course under various special topics being offered. Sophomore standing.
Prerequisite: Approval of faculty, program coordinator and chair.

ETEC 4376. Strength of Materials. 3 Hours.

This courses focuses on the analysis of stresses, strains, deflection, and deformation in bodies under the action of loads. Topics include statically indeterminate axially loaded members, thermal deformation, distribution of bending and shearing stresses in beams, stress and shear flow formulas, combined stresses and Mohr's circle, torsion on a circular shaft, empirical column formulas, and bolted joint failures.
Prerequisite: ETEC 3375.

ETEC 4384. Supervisory Personnel Practice. 3 Hours.

This course introduces students to the principles of management as pertaining to personnel. Responsibilities of management, industrial economics, supervisory information, training, group dynamics, work simplification, labor and human relations, working conditions, morale, motivation, and mental health are covered. Junior standing.
Prerequisite: ITEC 1361, ITEC 1363 and ITEC 1340.

ETEC 4390. Directed Studies. 3 Hours.

Designed to provide students with the opportunity to gain specialized experience in one or more of the following areas: internship, laboratory procedures, individualized study, innovative curricula, workshops, specialized training schools, and seminars. Internship is required of all teacher education majors. May be repeated or taken concurrently to a maximum of 9 hours. Faculty, Program Coordinator and Chair approval required.
Prerequisite: Sophomore standing.

ETEC 4391. Work Base Mentorship. 3 Hours.

Students work in their specialization in the industry. Students may complete their internship in one or two semesters. Students must work 100 clock hours for 1 college credit. Faculty, Program Coordinator and Chair approval required.
Prerequisite: Junior standing.

Electronics Technology

ETEC 1010. Engineering Foundations. 1-2 Hours.

This course focuses on leadership and study skills necessary for succeeding in the many career options available to professionals in industrial education, buisiness and industry. This course is intended for beginning students. Variable credit 1-2.

ETEC 1371. Descriptive Geometry. 3 Hours.

This course emphasizes problems of space relations of points, lines, surfaces, intersections, and developed surfaces, and their application to the graphical solution of engineering problems.

ETEC 2396. Special Topic. 3 Hours.

ETEC 3300. Technology Innovations. 3 Hours.

This course provides a study of societal technologies and their effects on the daily lives of consumers. The course presents the pervasive nature of technology innovations and increases the awareness of the promises of uncertainty associated with the use of technology as a human enterprise. .

ETEC 3340. Solar and Wind Energy Systems. 3 Hours.

This course will examine grid-connected and stand-alone solar photovoltaic and wind energy systems. System components including batteries, PV modules, charge controllers, maximum power point trackers, vertical and horizontal axis turbines, aerodynamics of wind turbines, wind farms and sighting, and inverters will be discussed. A comprehensive review of power production methods from solar and wind resources will be included, along with site surveying, commercial development,economics and environmental impacts.
Prerequisite: ETEE 1340 and Junior Standing.

ETEC 3360. Related Sci Mth & Tech In Occ. 3 Hours.

This is the written portion of an 18-hour segment of proficiency examinations. Consent of department chair.
Prerequisite: Sophomore standing.

ETEC 3361. Related Science, Mathematics, and Technology in Occupations. 3 Hours.

This is the written portion of an 18-hour segment of proficiency examinations.
Prerequisite: Consent of department chair.

ETEC 3362. Manipulative Skills In Occuptn. 3 Hours.

This segment is for the manipulative portion of the proficiency examination. Consent of department chair.
Prerequisite: Sophomore standing.

ETEC 3363. Manipulative Skills in Occupations. 3 Hours.

This segment is for the manipulative portion of the proficiency examination.
Prerequisite: Consent of department chair.

ETEC 3364. Rel Subj In Occuptnl Pers Qual. 3 Hours.

This is the oral portion of the proficiency examination. Consent of department chair.
Prerequisite: Sophomore standing.

ETEC 3365. Knowledge of Related Subjects in Occupations and Personal Qualifications. 3 Hours.

This is the oral portion of the proficiency examination.
Prerequisite: Consent of department chair.

ETEC 3374. Time And Motion Study. 3 Hours.

A study of the principles of motion economy, work measurement and improvement of production methods as they apply to modern industry. Attention is given to human relations, work simplification, and selected charting procedures.
Prerequisite: Sophomore standing or consent of instructor.

ETEC 3375. Statics. 3 Hours.

This course examines qualitative and quantitative treatments of forces and moments. Designing trusses, constructing free body diagrams, and performing equilibrium analysis for coplanar systems are included.
Prerequisite: PHYS 1301, PHYS 1101, and MATH 1316 or MATH 1430 or MATH 2399.

ETEC 3376. Microcontroller Applications. 3 Hours.

This course introduces microcontroller architecture and microcomputer systems, including memory and input/output interfacing. Topics include low-level language programming, bus architecture, I/O systems, interrupts, and other related topics. The functional and technological characteristics of microcontroller structures, memory components, peripheral support devices, and interface logic will be examined. Various hardware configurations and interfacing techniques will be discussed.
Prerequisite: ETEE 1340 and ETEE 2320 and Junior Standing or Consent of Instructor.

ETEC 4096. Directed Study. 1-6 Hours.

Arranged professional and developmental learning experiences incorporating a practical application of engineering technology skills and practices. To include internships, individual research and industry studies. Variable Credit (1-6).
Prerequisite: Sophomore standing.

ETEC 4099. Engineering Innovation. 1-3 Hours.

In this course, students work closely with faculty to design, develop, and implement innovative engineering projects as part of their capstone experience. Variable credit 1-3.
Prerequisite: Faculty Approval.

ETEC 4340. Alternative Energy Technology. 3 Hours.

This course examines existing and potential ambient alternative energy sources, production capacities, energy harvesting, conversion, and storage techniques. The course will also examine fundamental concepts, terminology, definitions, and nomenclature common to all energy systems.
Prerequisite: ITEC 1340 and junior standing.

ETEC 4367. Engineering Materials Techn. 3 Hours.

This course consists of the principles and techniques involved in designing and drawing machine parts and other items normally required in an industrial setting. Topics include sectioning, dimensioning, view rotation, symbols, legends, developments, and blueprint details. Junior standing.
Prerequisite: ETDD 1390 or ETEC 1361.

ETEC 4369. Spec Topics in Industrial Tech. 3 Hours.

Individual study in specialized areas of Industrial Technology. To be directed and approved by the Industrial Technology advisor. This course is designed to be a multitopic course. The student can take the course under various special topics being offered. Sophomore standing.
Prerequisite: Approval of faculty, program coordinator and chair.

ETEC 4376. Strength of Materials. 3 Hours.

This courses focuses on the analysis of stresses, strains, deflection, and deformation in bodies under the action of loads. Topics include statically indeterminate axially loaded members, thermal deformation, distribution of bending and shearing stresses in beams, stress and shear flow formulas, combined stresses and Mohr's circle, torsion on a circular shaft, empirical column formulas, and bolted joint failures.
Prerequisite: ETEC 3375.

ETEC 4384. Supervisory Personnel Practice. 3 Hours.

This course introduces students to the principles of management as pertaining to personnel. Responsibilities of management, industrial economics, supervisory information, training, group dynamics, work simplification, labor and human relations, working conditions, morale, motivation, and mental health are covered. Junior standing.
Prerequisite: ITEC 1361, ITEC 1363 and ITEC 1340.

ETEC 4390. Directed Studies. 3 Hours.

Designed to provide students with the opportunity to gain specialized experience in one or more of the following areas: internship, laboratory procedures, individualized study, innovative curricula, workshops, specialized training schools, and seminars. Internship is required of all teacher education majors. May be repeated or taken concurrently to a maximum of 9 hours. Faculty, Program Coordinator and Chair approval required.
Prerequisite: Sophomore standing.

ETEC 4391. Work Base Mentorship. 3 Hours.

Students work in their specialization in the industry. Students may complete their internship in one or two semesters. Students must work 100 clock hours for 1 college credit. Faculty, Program Coordinator and Chair approval required.
Prerequisite: Junior standing.

Safety Management

ETSM 2396. Special Topic. 3 Hours.

ETSM 3382. Issues In Nanotechnology Safty. 3 Hours.

This course introduces students to the emerging technological frontier of nanotechnology. Areas of study will include: potential health concern, potential safety hazards, exposed control procedures occupational health surveillance, and research in the area of safety management for furture nanotechnology workers.
Prerequisite: ETEE 1340, ETDD 1361 and Sophomore standing.

ETSM 4096. Directed Study. 1-6 Hours.

Arranged professional and developmental learning experiences incorporating a practical application of safety management skills and practices. To include internships, individual research and industry studies. Variable Credit (1-6).
Prerequisite: Sophomore standing.

ETSM 4363. Safety Program Management. 3 Hours.

This course presents an in-depth examination of the concepts, methods, and techniques involved in safety program management. Emphasis will be placed on the development of safety management programs for the industrial and construction industries. The strengths and weaknesses of existing safety programs, performance management techniques, behavior-based safety, design safety, legal aspects of safety and health management, and emerging trends in safety and health management will be covered.
Prerequisite: Junior standing.

ETSM 4369. Special Topic. 3 Hours.

ETSM 4382. Industrial Safety. 3 Hours.

This course is a study of the problems involved in developing an integrated safety program for an industrial or commercial establishment. It involves safety education, safe worker practices, recognition and elimination of health hazards, machinery guards, in-plant traffic, material handling and emergency treatment for industrial accidents. Prerequiste: ETCM 1363 and ETDD 1361. Junior standing.

Industrial Education

INED 4300. History and Objectives of CTE. 3 Hours.

A study of the history and philosophy of Vocational Industrial Education.

INED 4310. Occup. Human Relations in CTE. 3 Hours.

This course is designed to prepare the student to develop interpersonal skills and a better understanding of working relationships with people.

INED 4363. Preparation Of Instructnal Mtr. 3 Hours.

This course is designed to prepare a student in the selection, development, organization, and effective use of instructional materials in Industrial Education classes. It involves the study of types, values, limitations and sources of instruction sheets and other teaching aids.

INED 4364. Teaching in Schools & Industry. 3 Hours.

A study of the objectives and the selection, organization and presentation of the subject matter of the various areas of Industrial Education including the organization of units of work, and demonstration teaching.
Prerequisite: Junior standing.

INED 4379. Occupatnl Analysis & Curr Dvlp. 3 Hours.

This course is designed to enable a student to analyze trades, occupational pursuits and jobs for divisions, operations and information in order to develop a curriculum compatible to his/her teaching field.

INED 4382. Work-Based Learning. 3 Hours.

This course is to prepare the Work-Based Learning teacher to implement and teach a Work-Based Learning co-operative education class. The content will cover methods of student selection, work station qualifications, training plans, state and federal laws, and integration of the school and industrial work experience.
Prerequisite: Junior standing.

INED 4391. Lab Mgt,Organization & Control. 3 Hours.

This course is designed to prepare students to successfully manage laboratory activities, organize their labs in accordance with contemporary concepts, and to control materials/supplies within their laboratories.
Prerequisite: Junior standing or consent of instructor.