DEPARTMENT OF MATHEMATICS & STATISTICS


Website: Department of Mathematics and Statistics (http://www.shsu.edu/academics/mathematics-and-statistics)

Mathematics is a powerful tool for solving practical problems, combining logic and precision with intuition and imagination. The basic goal of mathematics is to reveal and explain patterns - whether the pattern appears as electrical impulses in an animal’s nervous system, as fluctuations in stock market prices, or as fine detail of an abstract geometric figure.

Mission
The Department of Mathematics and Statistics provides an environment that is conducive to and promotes the understanding of mathematics and statistics by all students, encourages community and institutional service, and encourages and supports continued faculty development and scholarship. The department undertakes the following efforts to support this mission:

- Houses the Reeves Center for Mathematics Education
- Directs a variety of undergraduate research programs
- Provides undergraduate student presentations at MAA meetings
- Coordinates numerous grants with government and education agencies

Career Opportunities
- Accounting and Finance
- Computer Programming
- Sales and Marketing
- Management and Related Positions
- Actuarial
- Computer Systems Analysis
- Engineering
- Statistics
- Mathematics
- Operations Research
- Modeling
- Academic Positions - High School or College

Suggested Minors
- Chemistry
- Computer Science
- Music
- Physics
- Pre-Med/Biology
- Statistics

Program Specific Requirements
Anyone considering a degree in Mathematics should consult an advisor in the Mathematics department prior to registering for any courses. Visit LDB 420 for more information.

- Bachelor of Arts, Major in Mathematics (catalog.shsu.edu/undergraduate/colleges-academic-departments/science-and-engineering-technology/mathematics-statistics/bs-mathematics)
- Bachelor of Science, Major in Mathematics (catalog.shsu.edu/undergraduate/colleges-academic-departments/science-and-engineering-technology/mathematics-statistics/bs-mathematics)
- Bachelor of Science, Major in Mathematics with Teacher Certification (catalog.shsu.edu/undergraduate/colleges-academic-departments/science-and-engineering-technology/mathematics-statistics/bs-mathematics-teacher-certification)
- Bachelor of Arts, Major in Mathematics with Secondary Certification With Two Teaching Fields (catalog.shsu.edu/undergraduate/colleges-academic-departments/science-and-engineering-technology/mathematics-statistics/bs-mathematics-secondary-certification-two-teaching-fields)
• Minor in Mathematics with Teacher Certification (catalog.shsu.edu/undergraduate/colleges-academic-departments/science-and-engineering-technology/mathematics-statistics/minor-mathematics-with-teacher-certification)

• Minor in Mathematics without Teacher Certification (catalog.shsu.edu/undergraduate/colleges-academic-departments/science-and-engineering-technology/mathematics-statistics/minor-mathematics-without-teacher-certification)

• Minor in Statistical Theory (catalog.shsu.edu/undergraduate/colleges-academic-departments/science-and-engineering-technology/mathematics-statistics/minor-statistical-theory)

• Minor in Statistical Method (catalog.shsu.edu/undergraduate/colleges-academic-departments/science-and-engineering-technology/mathematics-statistics/minor-statistical-method)

Student Organizations

• Student chapter of the Mathematical Association of America (MAA)

• Student chapter of the American Mathematical Society (AMS)

• Pi-Mu-Epsilon Mathematics Honor Society

• Ruth Lane Math Society

Internships

Possible internships exist with NASA, the National Security Agency, Actuarial Firms, and the Oil Industry. However, federally-funded Research Experiences for Undergraduates (REUs) are the most popular programs among mathematicians over the summer. REU students spend 8 weeks of the summer at a different university, doing mathematics or statistics research. Not only are all expenses paid, a pretty generous stipend is earned at the end of the summer. For more information, see the NSF page on REUs. (http://www.nsf.gov/crssprgm/reu/list_result.jsp?unitid=5044)

Scholarships

The Department of Mathematics and Statistics offers several scholarships each year and Sam Houston State University offers additional, university-wide scholarships. Additional fellowships are available for students engaged in undergraduate research. For information on departmental scholarships, contact the Department of Mathematics and Statistics. Information on University scholarships may be obtained at Office of Academic Scholarships (http://www.shsu.edu/dept/financial-aid/scholarships) or by telephone (936) 294-1672.

Mathematics

Course Descriptions (Per Subject)

MATH 0001. Math Intervention. 0 Hours.
NCBO Math Intervention. By department approval only.

MATH 0112. Intermediate Algebra (NCBO1). 1 Hour.
This course is an accelerated introduction to the concepts of relations and functions, inequalities, algebraic expressions, and equations. Particular attention is given to absolute value, polynomial, rational, and radical expressions. Special emphasis will be given to linear and quadratic expressions and equations. Credit in this course may not be applied toward graduation or classification of students by hours completed. Credit 0. Prerequisite: A score within 5 points of the minimum passing score on the TSI Assessment Test.

MATH 0212. Intermediate Algebra (NCBO2). 2 Hours.
This course continues an examination of the concepts of relations and functions, inequalities, algebraic expressions, and equations. Particular attention is given to absolute value, polynomial, rational, and radical expressions. Special emphasis will be given to linear and quadratic expressions and equations. Credit in this course may not be applied toward graduation or classification of students by hours completed. Credit 0.

Prerequisite: A score within 5 points of the minimum passing score on the TSI Assessment Test.

MATH 0331. Developmental Mathematics. 3 Hours.
This course deals with fundamental operations involving whole numbers, fractions, decimals and percents, ratio and proportion, interpretation of graphs, geometry, and introductory algebra including axioms and properties of the real number system, fundamental operations involving algebraic expressions, first and second degree equations and inequalities in one unknown. Credit in this course may not be applied toward graduation or classification of students by hours completed. Credit 0. Prerequisite: None.

MATH 0332. Intermediate Algebra. 3 Hours.
This course covers products and factoring of polynomials, algebraic fractions, exponents and radicals, quadratic equations, functions and graphs, applications and systems of equations. Credit in this course may not be applied toward graduation or classification of students by hours completed. Credit 0. Prerequisite: None.

MATH 1314. Pre Calculus Algebra. 3 Hours.
Topics include a brief review of introductory algebra, variation, elementary theory of equations, functions (including exponential and logarithmic), inequalities, systems of equations, and other related topics. Credit 3. Prerequisite: Passing score on the MATH TSI Assessment or equivalent.

MATH 1316. Plane Trigonometry. 3 Hours.
Topics include coordinate systems, circular functions, solutions of triangles, identities, trigonometric equations, and inverse functions. Credit 3. Prerequisite: Passing score on the MATH TSI Assessment or equivalent.

MATH 1324. Mth For Mngl Decision Making. 3 Hours.
Topics include a review of introductory algebra, equations, relations, functions, graphs, linear programming, systems of equations and matrices, and mathematics of finance. Credit 3. Prerequisite: Passing score on the MATH TSI Assessment or equivalent.

MATH 1332. College Mathematics. 3 Hours.
This course is designed to meet the objectives of Component area 2 of the core curriculum for non-business and non-science related majors. Topics may include sets, counting principles, probability, logic, linear algebra, linear programming, mathematics of finance, geometry, and calculus. Credit 3. Prerequisite: Passing score on the MATH TSI Assessment or equivalent.

MATH 1369. Elementary Statistics. 3 Hours.
This is a survey course in elementary statistics designed to acquaint students with the role of statistics in society. Coverage includes graphical descriptive methods, measures of central tendency and variation, the basic concepts of statistical inference, the notion of estimators, confidence intervals, and tests of hypotheses. Also offered as STAT 1369. Credit 3. Prerequisite: Passing score on the MATH TSI Assessment or equivalent.

MATH 1370. Intro to Biomedical Statistics. 3 Hours.
Specifically suited to those seeking entrance into the Nursing profession, this elementary statistics course is designed to foster critical thinking about data. Coverage includes graphical and numerical descriptive methods; measures of central tendency and variation; the basic concepts of statistical inference; the notion of estimators, confidence intervals and tests of hypotheses. Data will be analyzed with the help of software currently used in the profession, such as SPSS and/or Minitab. Also offered as STAT 1370. Credit 3. Prerequisite: Passing score on the MATH TSI Assessment or equivalent.

MATH 1384. Intro To Foundations Of Math I. 3 Hours.
Topics include a study of sets, systems of numeration, natural numbers, integers, number theory and rational numbers. Credit in this course is applicable only toward elementary/middle school certification. Credit 3. Prerequisite: Passing score on the MATH TSI Assessment or equivalent.

MATH 1385. Intro Foundations Of Math II. 3 Hours.
Topics include basic notions of Euclidean Geometry in 2 and 3 dimensions, ratio, proportions, percents, decimals, concepts of congruence and similarity, transformational geometry and measurement. Credit in this course is applicable only toward elementary/middle school certification. Credit 3. Prerequisites: MATH 1384 with a grade of C or better.

MATH 1410. Elementary Functions. 4 Hours.
Elementary Functions and their applications, including topics from algebra, trigonometry and analytic geometry, are used to assist in the algebraic and graphical description of the following elementary functions: polynomial, rational, exponential, logarithmic, and trigonometric functions. Credit 4. Prerequisites: Passing score on the MATH TSI Assessment or equivalent. This course is for students intending to take calculus (MATH 1420).

MATH 1420. Calculus I. 4 Hours.
Topics include limits and continuity, the derivative, techniques for differentiation of algebraic, logarithmic, exponential and trigonometric functions, applications of the derivative and anti-differentiation, definite integral, Fundamental Theorem of Calculus. Credit 4. Prerequisite: C or better in MATH 1410 or MATH 1314 and 1316 with a grade of C or higher; or high school equivalent.

MATH 1430. Calculus II. 4 Hours.
Topics include the definite integral and its applications, techniques of integration, improper integrals, Taylor's formula and infinite series. Credit 4. Prerequisite: MATH 1420 with a grade of C or better.
MATH 2384. Functions And Graphs. 3 Hours.

The emphasis of this course is on functions and their multiple representations including linear, polynomial, logarithmic, exponential and logistic functions. Normally offered in the Fall, Spring, and Summer. Credit 3. Prerequisite: MATH 1385 with grade of C or better. This course may be applied only toward middle school teacher certification. Normally offered in the Fall, Spring and Summer.

MATH 2385. Fundamentals Of Calculus. 3 Hours.

This course provides an introduction to the concepts and applications of calculus. This course may be applied only toward middle school teacher certification. Normally offered in the Fall, Spring, and Summer. Credit 3. Prerequisite: C or better in MATH 2384. Normally offered in the Fall, Spring and Summer.

MATH 2395. Discrete Mathematics. 3 Hours.

This is an applied course in discrete mathematical structures. Topics may include sets, logic, mathematical proof, computational complexity, relations, graphs, trees, boolean algebra, number theory, combinatorics, probability, recurrence relations, and finite state machines. This course is designed for computer science majors, so programming applications will be emphasized. Credit 3. Prerequisites: MATH 1420 and COSC 1436 with a grade of C or better.

MATH 2399. Mth For Mngl Decision Making. 3 Hours.

Topics include differential and integral calculus with applications in areas such as business and economics. Credit 3. Prerequisite: MATH 1324 or 1314.

MATH 2440. Calculus III. 4 Hours.

This course includes the study of the calculus of functions of several variables and topics in vector calculus including line and surface integrals, Green’s Theorem, Divergence Theorem, and Stoke’s Theorem. Credit 4. Prerequisite: MATH 1430 with a grade of C or better.

MATH 3300. Introduction To Math Thought. 3 Hours.

This course includes an introduction to sets, logic, the axiomatic method and proof. Writing enhanced. Credit 3. Prerequisite: Grade of C or better in MATH 1430 or consent of instructor.

MATH 3350. Theory of Interest. 3 Hours.

This course will derive the mathematical principles behind financial instruments involving interest. Topics include amount functions, interest rates and yields, force of interest, special annuity types, bonds, yield curves, and interest rate sensitivity. Also included will be a discussion of the mathematics of financial derivatives. This course covers the content on which the joint Society of Actuaries/Casualty Actuarial Society Exam FM/2 on mathematical interest theory is based. Credit 3. Prerequisite: Grade of C or better in MATH 1430.

MATH 3363. Euclidean Geometry. 3 Hours.

This course consists of a modern development of Euclidean geometry and a limited introduction to non-Euclidean geometry. Writing enhanced. Credit 3. Prerequisite: MATH 3300 or consent of instructor.

MATH 3376. Differential Equations. 3 Hours.

This course, in conjunction with MATH 4376, is intended to develop a basic competence in areas of mathematics that are used in solving problems from the physical sciences. This first course emphasizes the general solution of ordinary differential equations, including the Laplace transform and infinite series methods. Credit 3. Prerequisite: Grade if C or better in MATH 2440 or concurrent enrollment.

MATH 3377. Intro To Linear Alg & Matrics. 3 Hours.

Topics include: solving systems of linear equations, fundamental matrix theory (invertibility theorems, determinants), eigenvectors, and properties of linear transformations. Remaining topics are chosen from: Properties of general vector spaces, inner product spaces, and/or diagonalization of symmetric matrices. Credit 3. Prerequisite: Grade of C or better in MATH 1430.

MATH 3379. Statistical Mthods In Practice. 3 Hours.

Topics include organization and presentation of data, measures of central tendency, dispersion, and position, probability distributions for discrete and continuous random variables, sampling techniques, parameter estimation, and hypothesis testing. Emphasis will be given to the use of statistics packages. Normally offered in the Fall, Spring, Summer I. Also offered as STAT 3379. Credit 3. Prerequisite: Three (3) semester hours of college mathematics.

MATH 3380. Historical Perspec of Math. 3 Hours.
(SH Prior Course ID: MTH 380); This course is designed to present mathematical topics from a historical perspective. The number systems and computational methods of past cultures and civilizations are discussed, along with the development of number theory and trigonometry. Credit in this course is applicable only toward elementary/middle school teacher certification. Normally offered in the Fall and Spring. Credit 3. Prerequisite: C or better in MATH 2384. Normally offered in the Fall and Spring.

MATH 3381. Intro - Foundation Of Math III. 3 Hours.

Topics include proportions, percents, probability, data analysis, algebraic reasoning, and problem solving. Credit in this course is applicable only toward elementary/middle school certification. Normally offered in the Fall, Spring, and Summer. Credit 3. Prerequisite: C or better in MATH 1385. Normally offered in the Fall, Spring and Summer.

MATH 3382. Foundations Of Middle Sch Math. 3 Hours.

Topics include relations, functions, coordinate geometry, logic, and history of mathematics. Credit in this course is applicable only toward middle school certification. Normally offered in the Fall and Spring. Credit 3. Prerequisite: C or better in MATH 2384. Normally offered in the Fall and Spring.

MATH 3383. Geometric Meas./Transformation. 3 Hours.

Topics included in this course are measurement in one, two, and three dimensions, the metric system, transformational geometry, congruencies, similarities, geometric constructions, and coordinate systems. This course may be applied only toward middle school certification. Normally offered in the Fall and Spring of each year and in the Summer of odd numbered years. Credit 3. Prerequisite: C or better in MATH 2385. Normally offered in the Fall and Spring of each year and in the Summer of odd numbered years.

MATH 3384. Foundations Of Mathematics. 3 Hours.

This course includes an introduction to logic, concepts of proof, proof techniques, induction, and sets. It may be applied only toward middle school certification. Writing enhanced. Normally offered in the Fall and Spring and in the Summer of even numbered years. Credit 3. Prerequisite: C or better in MATH 2385 or equivalent. Normally offered in the Fall and Spring and in the Summer of even numbered years.

MATH 3386. Fundmtls Probability/Stats. 3 Hours.

This course provides an introduction to probability, descriptive statistics, and inferential statistics, including regression, confidence intervals, and the construction and interpretation of tables, graphs, and charts. Technology related to the above topics will be incorporated into the course. This course may be applied only toward middle school certification. Normally offered in the Fall and Spring and in the Summer of even numbered years. Credit 3. Prerequisite: C or better in MATH 2385 or equivalent. Normally offered in the Fall and Spring and in the Summer of even numbered years.

MATH 3387. Problem Solving-Middle Sch Mth. 3 Hours.

Topics included in this course are problem-solving strategies appropriate for middle school or junior high mathematics. The course may be applied only toward middle school certification. Normally offered in the Fall and Spring of each year and in the Summer of odd numbered years. Credit 3. Prerequisite: C or better in MATH 2385. Normally offered in the Fall and Spring of each year and in the Summer of odd numbered years.

MATH 3394. Numerical Methods. 3 Hours.

Topics include interpolation, approximations, solutions of equations, and the solution of both linear and nonlinear systems of equations. Credit 3. Prerequisites: COSC 1436 and MATH 1430 with a grade of C or higher.

MATH 3396. Operations Research I. 3 Hours.

Techniques for the application of the scientific method to decision making in business and government are presented through the formulation and interpretation of mathematical models for various specific real life problems. Credit 3. Prerequisite: MATH 1430 with a grade of C or higher.

MATH 4361. Introductory Analysis. 3 Hours.

This course consists of a more thorough treatment of the material traditionally considered in elementary calculus. Topics include sets, functions, properties of the real number system and sequences. Writing enhanced. Credit 3. Prerequisite: C or better in MATH 3300 or consent of the instructor.

MATH 4366. Elementary Analysis. 3 Hours.

Topics include limits, continuity, differentiation, Riemann integration, infinite series and sequences and series of functions. Writing enhanced. Credit 3. Prerequisite: MATH 4361 with a grade of C or better.

MATH 4367. The Evolution Of Mathematics. 3 Hours.

An introduction to the historical development of fundamental mathematical ideas from antiquity to the present. Writing Enhanced.

Prerequisite: Grade of C or better in MATH 1430.
MATH 4370. Special Topics In Mathematics. 3 Hours.

Normally, this course consists of readings and individual research appropriate for the undergraduate level with subject matter for study selected by mutual agreement of student and supervisor. However, special classes may be organized when there is sufficient student interest in a particular project. Writing enhanced. This course may be taken for Academic Distinction Credit. See Academic Distinction Program in this catalog. Credit 3. Prerequisites: Six (6) semester hours of advanced college math and instructor consent.


Topics include basic concepts and properties of probability, random variables, statistical distributions, measures of central tendency, variance, covariance, correlation, functions of random variables, sampling distributions, and the Central Limit Theorem. Also offered as STAT 4371. Normally offered in the Fall. Credit 3. Prerequisite: MATH 1430. Normally offered in the Fall.

MATH 4372. Thy & Appl Probability & Stat. 3 Hours.

Topics include multivariate, conditional and marginal distributions, point and interval estimation, theory of estimation, maximum likelihood estimates, hypothesis testing, likelihood ratio tests, contingency analysis, and nonparametric statistics. Also offered as STAT 4372. Normally offered in the Spring. Credit 3. Prerequisites: MATH 2440 and STAT 4371. Normally offered in the Spring.

MATH 4376. Topics In Applied Mathematics I. 3 Hours.

This course, in conjunction with MATH 3376, is intended to develop a basic competence in areas of mathematics that are used in solving problems from the physical sciences. Topics will be selected from partial differential equations, multivariable and vector calculus, and complex analysis. Credit 3. Prerequisite: MATH 3376 or consent of the instructor.

MATH 4377. Algebraic Structures. 3 Hours.

Topics include groups, rings, fields, finite groups and Abelian groups. Writing enhanced. Credit 3. Prerequisites: C or better in MATH 3300 and MATH 3377.

MATH 4384. Survey Of Mathematical Ideas. 3 Hours.

This course is designed to bring together and supplement the technical material of other mathematics courses in the mathematics teacher-education program and relate it to the mathematics curriculum of the secondary school. This course may be applied only toward teacher certification. Normally offered in the Spring. Credit 3. Prerequisite: MATH 3376 or consent of the instructor.

MATH 4385. Mathematical Problem Solving. 3 Hours.

This course focuses on solving mathematical problems including the use of proof as well as graphical and numerical methods. It extends and connects concepts from algebra, geometry, and calculus, including functions, graphs, complex numbers and number systems. This course may be applied only toward teacher certification. Normally offered in the Fall. Credit 3. Prerequisites: Grade of C or better in MATH 3300; Advanced standing in mathematics. Normally offered in the Fall.

MATH 4395. Undergraduate Research. 3 Hours.

This course consists of special projects or topics in theoretical or applied mathematics. Each student pursues an approved project of interest guided by a mathematics faculty member. Each student is expected to demonstrate individual initiative in planning and conducting the research program or topic. This course may be taken for Academic Distinction credit. Credit 3. Prerequisite: C or better in MATH 3300 and department approval.

Statistics

STAT 1369. Elementary Statistics. 3 Hours.

This is a survey course in elementary statistics designed to acquaint students with the role of statistics in society. Coverage includes graphical descriptive methods, measures of central tendency and variation, the basic concepts of statistical inference, the notion of estimators, confidence intervals, and tests of hypotheses. Also offered as MATH 1369. Prerequisite: Passing score on the MATH TSI Assessment or equivalent.

STAT 3379. Statistical Methods In Practice. 3 Hours.

Topics include organization and presentation of data; measures of central tendency, dispersion, and position; probability distributions for discrete and continuous random variables, sampling techniques, parameter estimation, and hypothesis testing. Emphasis will be given to the use of statistical packages. Also offered as MATH 3379. Prerequisite: Three (3) semester hours of college mathematics.
STAT 3380. Stat Design & Anal Of Experiments. 3 Hours.
Topics include sampling designs and hypothesis testing in analysis of variance, analysis of covariance, and regression analysis. Design characteristics, model diagnostics, and hypothesis testing will be emphasized and work will be required on real data. The MINITAB and SAS statistics packages will be applied. Normally offered in the Spring semester.
Prerequisite: STAT 3379 or MATH 3379.

STAT 3381. Sample Survey Methods. 3 Hours.
The course treats principles needed in planning and conducting sample surveys. Topics include random, stratified, systematic, and cluster sampling methods as well as sub sampling techniques.
Prerequisite: STAT 3379 or MATH 3379.

STAT 4090. Independent Study. 1-3 Hours.
This course is designed for advanced students to engage in independent study of an area of interest in statistics under the close guidance of a faculty mentor. Prerequisite: Consent of instructor. Variable credit (1 to 3).
Prerequisite: Consent of instructor.

STAT 4370. Special Topics In Statistics. 3 Hours.
This course is designed to accommodate independent study and research with content determined by mutual agreement of student and supervisor. However, it may also be taught as a special organized class when there is sufficient student interest in a particular project. Such topics as survival analysis, modeling and analysis, categorical data analysis, bio-statistics, Monte-Carlo techniques, and bootstrapping may be included. This course may be taken for Academic Distinction credit. (See Academic Distinction Program in this catalog.) May be repeated for credit.
Prerequisite: MATH 3379 or STAT 3379, and consent of instructor.

Topics include basic concepts and properties of probability, random variables, statistical distributions, measures of central tendency, variance, covariance, correlation, functions of random variables, sampling distributions, and the Central Limit Theorem. Also offered as MATH 4371. Normally offered in the Fall semester.
Prerequisite: MATH 1430.

STAT 4372. Thry & Aplctn Of Prob & Sta II. 3 Hours.
Topics include multivariate, conditional and marginal distributions, point and interval estimation, theory of estimation, maximum likelihood estimates, hypothesis testing, likelihood ratio tests, contingency analysis, and nonparametric statistics. Also offered as MATH 4372. Normally offered in the Spring.
Prerequisite: MATH 2440 and STAT 4371.

STAT 4373. Nonparametric Statistics. 3 Hours.
Topics include chi-square goodness-of-fit testing and inferences concerning location and scale. Specific tests include the sign test, Wilcoxon signed-rank test, the Kruskal-Wallis test, tests for randomness and trends, and contingency analyses.
Prerequisite: STAT 3379 or MATH 3379.

STAT 4374. Regression Modeling & Analysis. 3 Hours.
Topics include model estimation and testing, model diagnostics, residual analysis, variables selection, and multicollinearity. Work will be required on real data with the use of the MINITAB and SAS statistics packages.
Prerequisite: STAT 3379 or MATH 3379.

STAT 4375. Quality Control & Reliability. 3 Hours.
In this course, students examine topics such as attribute and variables control charts, process capability, acceptance sampling, probabilistic foundations of reliability, hazard functions, failure laws, and system reliability.
Prerequisite: MATH 3379 or STAT 3379.

STAT 4376. Time Series and Forecasting. 3 Hours.
In this course, students examine topics such as types and classification of time series, methods of forecasting, errors in forecasting, regression analysis for time series, decomposition methods, exponential smoothing, Box-Jenkins methods, nonseasonal and seasonal modeling, and transfer function and intervention models.
Prerequisite: MATH 3379 or STAT 3379.

Chair: Melinda Ann Holt

John G Alford, PHD (jga001@shsu.edu), Associate Professor of Mathematics, Department of Math and Statistics, PHD, Univ of Houston-Main; MS, Univ of Houston-Main; BS, Univ of Calif-Los Angeles

Emma Kathleen Price Bullock, PHD (exb051@shsu.edu), Assistant Professor of Mathematics, Department of Math and Statistics, PHD, Utah State University; MMATH, Utah State University; BS, Brigham Young University

Ferry B Butar, PHD (mth_fbb@shsu.edu), Professor of Mathematics, Department of Math and Statistics, PHD, Univ of Nebraska-Lincoln; MA, Univ of Nebraska-Lincoln; MS, Univ of Nebraska-Lincoln; BS, Academy of Statistics
Scott Thomas Chapman, PHD (stc008@shsu.edu), Professor of Mathematics, Department of Math and Statistics, PHD, Univ of North Texas; MS, Univ of N Carolina-Chapel Hill; BS, Wake Forest University; BS, Wake Forest University

Max W. Coleman, EDD (mth_mwc@shsu.edu), Professor of Mathematics, Department of Math and Statistics, EDD, Univ of Houston-Main; MS, Indiana State University; BS, Indiana State University

Beth L Cory, PHD (blc006@shsu.edu), Associate Professor of Mathematics, Department of Math and Statistics, PHD, University of Virginia - SFS; MS, Florida State University; BS, Liberty University

Brandy Gunnt Doleshal, PHD (bdoleshal@shsu.edu), Assistant Professor of Mathematics, Department of Math and Statistics, PHD, Univ of Texas At Austin; BA, Indiana University; BS, Indiana University

Luis D Garcia, PHD (ldg005@shsu.edu), Associate Professor of Mathematics, Department of Math and Statistics, PHD, Virginia PolytechnicState U; BS, Univ Nacl Autonoma de Mexico

Rebecca E Garcia, PHD (mth_reg@shsu.edu), Associate Professor of Mathematics, Department of Math and Statistics, PHD, New Mexico State University; MA, Univ of Calif-Berkeley; BS, Loyola Marymount University

Damon Martin Hay, PHD (dhay@shsu.edu), Associate Professor of Mathematics, Department of Math and Statistics, PHD, Univ of Houston-Main; MS, Univ of Texas At Austin

Melinda Ann Holt, PHD (mmx014@shsu.edu), Professor of Statistics and Chair of Mathematics and Statistics, Department of Math and Statistics, PHD, Baylor University; MA, Baylor University; BA, Baylor University

William A. Jasper, PHD (mth_waj@shsu.edu), Professor of Mathematics, Department of Math and Statistics, PHD, Texas AM University; MS, Univ of Southern California; BS, Lafayette College

Dustin L Jones, PHD (djlones@shsu.edu), Associate Professor of Mathematics, Department of Math and Statistics, PHD, Univ of Missouri-Columbia; MS, Texas AM University; BS, Southwest Baptist University

Ram Chandra Kafle, PHD (rckafle@shsu.edu), Assistant Professor of Statistics, Department of Math and Statistics, PHD, Univ of South Florida; MS, Univ of Akron; MS, Tribhuvan University; BS, Tribhuvan University

Mark L. Klespis, PHD (mth_mlk@shsu.edu), Professor of Mathematics, Department of Math and Statistics, PHD, Univ of Texas At Austin; MS, Univ of Texas-EI Paso; BS, Univ of Texas-EI Paso

Brian M Loft, PHD (mth_bml@shsu.edu), Associate Professor of Mathematics, Faculty Administrative Fellow, Department of Math and Statistics, PHD, Univ of Oregon; MS, Texas State Univ-San Marcos; BS, Louisiana Tech University

Martin E Malandro, PHD (mem037@shsu.edu), Associate Professor of Mathematics, Department of Math and Statistics, PHD, Dartmouth College; AM, Dartmouth College; BS, Texas Tech University

Ananda Bandulasiri Manage, PHD (wxb001@shsu.edu), Associate Professor of Mathematics, Department of Math and Statistics, PHD, Texas Tech University; MS, Texas Tech University; MS, Sam Houston State University; BS, University of Kelaniya

Taylor Elizabeth Martin, PHD (taylor.martin@shsu.edu), Assistant Professor of Mathematics, Department of Math and Statistics, PHD, Rice University; MA, Rice University; BA, Univ of Rochester; BS, Univ of Rochester

Stephen Mark Scariano, PHD (sms049@shsu.edu), Professor of Mathematics, Department of Math and Statistics, PHD, Texas Tech University; MS, Texas Tech University; BS, Loyola Univ-New Orleans

Jon W. Short, PHD (mth_jws@shsu.edu), Associate Professor of Mathematics, Department of Math and Statistics, PHD, St Louis University; MS, Oklahoma State University; BS, Oklahoma State University

Kenneth Woodward Smith, PHD (kws006@shsu.edu), Professor of Mathematics, Department of Math and Statistics, PHD, Colorado State University; MS, Univ of Illinois-Urbana; BS, Western Illinois University

Mary B Swarthout, PHD (mbs001@shsu.edu), Associate Professor of Mathematics, Department of Math and Statistics, PHD, Ohio State Univ; MA, Miami University; BA, Berea College

Edward W. Swim, PHD (ews007@shsu.edu), Assistant Professor of Mathematics, Department of Math and Statistics, PHD, Texas Tech University; MS, Colorado School of Mines; BS, Angelo State University

Timothy O Trujillo, PHD (txt031@shsu.edu), Assistant Professor of Mathematics, Department of Math and Statistics, PHD, Univ of Denver; MS, New Mexico Inst/Mining/Tech; BS, New Mexico Inst/Mining/Tech
Jianzhong Wang, PHD (jzwang@shsu.edu), Professor of Mathematics, Department of Math and Statistics, PHD, Wuhan University; MS, Zhejiang University; BS, Peking University

Li An Wang, PHD (ldw021@shsu.edu), Assistant Professor of Mathematics, Department of Math and Statistics, PHD, Univ of Oregon; MS, Univ of Oregon; BS, University of British Columbia

Linda Reichwein Zientek, PHD (lrz002@shsu.edu), Associate Professor of Mathematics, Department of Math and Statistics, PHD, Texas AM University; MS, Sam Houston State University; BS, Sam Houston State University

Interim Faculty

Julie Nicholson Albert, MA (jna003@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, MA, Sam Houston State University; BS, Appalachian State University

Spurgeon Busby, MS (spurgeon.busby@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, MS, Univ of Texas-San Antonio; BS, St Mary’S University

Vinh Xuan Dang, PHD (vxd017@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, PHD, Brigham Young University; MS, Brigham Young University; BS, Brigham Young University

Kasun Thanuka Dewage, MS (ktd010@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, MS, South Houston State University; MS, University of Columbo; BS, University of Columbo

David A. Dippel, EDD (dad052@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, EDD, Argosy University; MS, Univ of Houston-Main; BS, Stephen F Austin University

Ejike John Edeh, EDM (eje004@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, EDM, Harvard University; MED, Sam Houston State University; BSC, University of Nigeria

Sarah Jill Fritsch, MS (sarah.fritsch@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, MS, Sam Houston State University; BS, Sam Houston State University

Paul Eugene Harbison, MS (peh004@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, MS, National Defense University; MS, Golden Gate University; BS, Texas Tech University

Deborah A Henderson, BBA (dah038@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, BBA, Sam Houston State University

Amairani Hernandez Garcia, MS (axh063@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, MS, Sam Houston State University; BS, Univ of Houston-Downtown

Cheri Hudgeons, MS (cch022@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, MS, Sam Houston State University; BS, Sam Houston State University

Tugba Karabiyik, PHD (ttx009@shsu.edu), Visiting Assistant Professor of Mathematics, Department of Math and Statistics, PHD, Florida State University; MS, Florida State University; BS, Firat University

Shirley Ann Kitchens, MA (sak037@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, MA, Texas Tech University; BSED, Texas Tech University

Stefanie Elaine Lane, MS (sem002@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, MS, Univ of Texas-Arlington; BS, Sam Houston State University

Steven Frederick Larson, MS (sfl005@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, MS, Brigham Young University; BS, Brigham Young University

Sanduni Shamila Leelaratne, MS (ssl012@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, MS, Sam Houston State University; BS, University of Columbo

Cathy Lynn Lockwood, MS (ccl011@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, MS, Sam Houston State University; BS, Sam Houston State University

Melissa Suzanne Martin, MS (msm13@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, MS, Sam Houston State University; BS, Sam Houston State University

Joseph N. O’Brien, PHD (mth_jno@shsu.edu), Associate Professor of Mathematics, Department of Math and Statistics, PHD, Iowa State University; BS, Loras College
Mary Lou Shelton, MA (mlshelton@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, MA, Sam Houston State University; BS, Texas AM University

Darrel Allan Silva, MS (das019@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, MS, Sam Houston State University; BS, Texas AM University

Clarissa Renee Stone, MS (crs031@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, MS, Sam Houston State University; BS, Sam Houston State University

Sriyan Parakrama Gerard Wickramasuriya, MS (spw015@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, MS, Sam Houston State University

Casandra Linn Wright, MS (wrightcasandra@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, MS, Stephen F Austin University; MS, Univ of North Texas; BS, Dallas Baptist University

Margaret Sucec Young, MED (margaret.s.young@shsu.edu), Lecturer of Mathematics, Department of Math and Statistics, MED, Sam Houston State University; BS, Texas AM University