BACHELOR OF SCIENCE, MAJOR IN MATHEMATICS: 4+1 MS MATHEMATICS

Code Title Hours
Bachelor of Science, Major in Mathematics: 4+1 MS in Mathematics
Core Curriculum
Component Area I (Communications) 6
Component Area II (Mathematics) 3
Component Area III (Life and Physical Science) ${ }^{2}$ 8
Component Area IV (Language, Philosophy, and Culture) ${ }^{3}$ 3
Component Area V (Creative Arts) 3
Component Area VI (U.S. History) 6
Component Area VII (Political Science/Government) 6
Component Area VIII (Social and Behavioral Sciences) 3
Component Area IX (Component Area Option) ${ }^{1}$ 4
Degree Specific Requirements
Science Courses for Science Majors - Select eight hours from the following: ${ }^{2}$ 8
BIOL 1406 General Biology I
\& BIOL 1407 and General Biology II
CHEM 1411 General Chemistry I
\& CHEM 1412 and General Chemistry II
Eight hours from GEOG 1401, GEOL 1403, GEOL 1404, GEOL 1405
COSC 1436 Programming Fundamentals I 4
ENGL 2332 World Literature I: Before the 17th Century ${ }^{3}$ 3
or ENGL 2333 World Literature II: From the 17th Century and After
KINE 2115 Lifetime Health and Wellness ${ }^{4}$ 1
PHYS 1411 Introduction To Physics I 8
\& PHYS 1422 and Introduction To Physics II
or PHYS 2426
Major: Foundation
MATH 1420 Calculus ${ }^{1}$ 4
MATH 1430 Calculus II 4
MATH 2440 Calculus III 4
MATH 3300 Introduction to Mathematics Thought 3
MATH 3376 Differential Equations 3
MATH 3377 Introduction to Linear Algebra and Matrices 3
MATH 4361 Introductory Analysis 3
MATH 4366 Elementary Analysis 3
MATH 4371 Theory and Applications of Probability and Statistics I 3
MATH 4377 Algebraic Structures 3
Major: Prescribed Electives
Advanced MATH Electives ${ }^{5}$ 6
Electives: General
Advanced General Electives 6
Minor: Required
Minor ${ }^{6,7}$ 18
4+1 MS in Mathematics ${ }^{8}$
MATH 5397 Discrete Mathematics 3
MATH 6332 Introduction To Topology 3
MATH 6333 Foundations Of Analysis I 3MATH 6334Foundations Of Analysis II3

Notes

Students must earn a 2.0 minimum overall GPA in all coursework to complete the BS in Mathematics degree.

Students must meet a 2.5 minimum overall major GPA in all major coursework to complete the BS in Mathematics degree.
Students must earn a 2.0 minimum SHSU GPA in all coursework to complete the BS in Mathematics degree.
Students must meet a 2.5 minimum SHSU major GPA in all major coursework to complete the BS in Mathematics degree.

Students should use the Minor and Advanced Electives to complete the 42-advanced hour requirement for graduation.

Anyone considering a degree in Mathematics should consult an advisor in the Department of Mathematics prior to registering for any courses. For more information, please visit the Lee Drain Building, Suite 420.

First Year

Second Year

	Hours	Spring	Hours	
ENGL 2332 or $2333{ }^{5}$		3 Component Area IX (http:// catalog.shsu.edu/ undergraduate/ academic-policies-procedures/degree-requirements-academic-guidelines/ core-curriculum/ \#componentareaix)		3
MATH 2440		4 Advanced MATH Electives ${ }^{6}$		6
MATH 3376		3 MATH 3300		3
MATH 4371		3 PHYS 1422 or 2426		4
PHYS 1411		4		
		17		6
Third Year				
Fall Component Area VIII (http:// catalog.shsu.edu/ undergraduate/ academic-policies- procedures/degree- requirements- academic-guidelines/ core-curriculum/ \#componentareaviii)	Hours	Spring 3 HIST 1302^{7}	Hours	3
Advanced MATH Electives ${ }^{6}$		3 MATH 4366		3

HIST 1301^{7}	3 MATH 4377	3
MATH 4361	3 Minor Electives 8	6
Minor Electives		
POLS 2305^{9}	3 POLS 2306^{9}	3
	3	$\mathbf{1 8}$

Fourth Year

Fall	Hours	Spring	Hours	Summer	Hours	
General Electives		3 MATH 6332		3 Graduate MATH Electives ${ }^{10}$		3
MATH 6333		3 MATH 6334		3 Thesis or Project + Internship ${ }^{11}$		6
MATH 6335		3 MATH 6336		3		
Minor Electives ${ }^{8}$		9				
		18		9		9
Fifth Year						
Fall	Hours	Spring	Hours			
Graduate MATH Electives ${ }^{10}$		3 Graduate MATH Electives ${ }^{10}$		6		
MATH 6368		3 MATH 5397		3		
MATH 6379		3				
		9		9		

Total Hours: 156

1 Science Courses for Science Majors: BIOL 1406 and BIOL 1407 or CHEM 1411 and CHEM 1412 or eight hours from GEOG 1401, GEOL 1403, GEOL 1404, GEOL 1405.
2 Satisfies Core Curriculum requirement for Component Area I (Communications).
3 If KINE 2115 is used to satisfy the Core Curriculum requirement for Component Area IX (Component Area Option), an additional credit hour will be needed as a General Elective.
4 Satisfies Core Curriculum requirement for Component Area II (Mathematics) and one semester credit hour of Component Area IX (Component Area Option).
5 Satisfies Core Curriculum requirement for Component Area IV (Language, Philosophy, and Culture).
6 Advanced MATH electives do not include MATH 3363, MATH 3379/STAT 3379, MATH 3380, MATH 3381, MATH 3383, MATH 3384, MATH 3386, MATH 3387, MATH 4367, MATH 4384, and MATH 4385. (MATH 3380, MATH 3381, MATH 3383, MATH 3384, MATH 3386, MATH 3387, MATH 4384, and MATH 4385 are designed for students in the BS, Double Major in Education and Mathematics.)
$7 \quad$ Satisfies Core Curriculum requirement for Component Area VI (U.S. History).
8 The following minor cannot be paired with this degree program: Minor in Mathematics.
9 Satisfies Core Curriculum requirement for Component Area VII (Political Science/Government).
10 Select graduate courses in MATH in consultation with the Graduate Advisor.
11 Students choosing the Thesis option must take MATH 6099 and MATH 6398. Students choosing the Project + Internship option must take MATH 5300 and MATH 6380.

Code	Title	Hours
Undergraduate/Graduate Course Crosswalk		
The undergraduate course requirements identified below are being satisfied by the corresponding (row) graduate courses identified below.		
Undergraduate Level Courses		
MATH 4369	Foundations of Analysis (satisfied by MATH 6333)	3
MATH 4378	Abstract Algebra (satisfied by MATH 6335)	3
Graduate Level Course Replacements		
MATH 6333	Foundations Of Analysis I	3
MATH 6335	Algebra I	3

Notes

Students must earn a 2.0 minimum overall GPA in all coursework to complete the BS in Mathematics degree.
Students must meet a 2.5 minimum overall major GPA in all major coursework to complete the BS in Mathematics degree.

Students must earn a 2.0 minimum SHSU GPA in all coursework to complete the BS in Mathematics degree.
Students must meet a 2.5 minimum SHSU major GPA in all major coursework to complete the BS in Mathematics degree.
Students should use the Minor and Advanced Electives to complete the 42-advanced hour requirement for graduation.
Anyone considering a degree in Mathematics should consult an advisor in the Department of Mathematics prior to registering for any courses. For more information, please visit the Lee Drain Building, Suite 420.

The Texas Higher Education Coordinating Board (THECB) marketable skills initiative is part of the state's 60x30TX plan and was designed to help students articulate their skills to employers. Marketable skills are those skills valued by employers and/or graduate programs that can be applied in a variety of work or education settings and may include interpersonal, cognitive, and applied skill areas.

The BS in Mathematics: 4+1 MS in Mathematics is designed to provide graduates with the following marketable skills:

- Expertise in mathematical analysis and problem solving that is applicable in a wide variety of industry-related positions.
- Expertise in mathematical writing.
- Experience in multiple phases of course preparation and teaching of mathematics at the freshman level.
- Preparation for further study at the doctoral level in mathematics and closely related areas.
- Proficiency in a variety of scientific computing environments and programming languages.

